HMI Instrument Status

Jesper Schou
Stanford University
schou@sun.stanford.edu
Overview

- The damned thing works!
- Any questions?
Overview

• **Calibration Status**
 – Image quality
 – Wavelength dependence
 – Polarization
 – Miscellaneous

• **Outstanding issues and plans**
Observing Scheme

- Make I, Q, U, V, LCP, RCP from filtergrams
 - Identify bad pixels
 - Correct for flat field and exposure time
 - Fill in space
 - Correct for solar rotation and jitter (spatial interpolation)
 - Correct for acceleration effects and fill in time (temporal interpolation)
 - Nyquist criterion almost fulfilled for Doppler and LOS
 - Nyquist is grossly violated for vector measurements in case of long framelines
 - Clever tricks exist
 - Apply demodulation matrix

- MDI-like and/or least squares for Doppler and LOS

- Fast and/or full inversion for vector field
 - First average in time if desired
Framelist Example

5 Position Framelist

<table>
<thead>
<tr>
<th>Time(s)</th>
<th>0</th>
<th>8</th>
<th>16</th>
<th>24</th>
<th>32</th>
<th>40</th>
<th>48</th>
<th>56</th>
<th>64</th>
<th>72</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuning</td>
<td>I1</td>
<td>I2</td>
<td>I3</td>
<td>I4</td>
<td>I5</td>
<td>I1</td>
<td>I2</td>
<td>I3</td>
<td>I4</td>
<td>I5</td>
</tr>
<tr>
<td>Doppler pol.</td>
<td>L R</td>
</tr>
<tr>
<td>Vector pol.</td>
<td>1 2</td>
<td>1 2</td>
<td>1 2</td>
<td>1 2</td>
<td>1 2</td>
<td>3 4</td>
<td>3 4</td>
<td>3 4</td>
<td>3 4</td>
<td>3 4</td>
</tr>
</tbody>
</table>

- **Time**: Time of first exposure at given wavelength since start of framelist execution
- **Tuning**: I1, I2, ... specify the tuning position
- **Doppler pol.**: Polarization of image taken with Doppler camera
 - L and R indicate left and right circular polarization
 - Used for Doppler and line of sight field
- **Vector pol.**: Polarization of image taken with vector camera
 - 1, 2, 3, 4: Mixed polarizations needed to make vector magnetograms
 - Used for vector field reconstruction
- **T data from the two cameras may be combined**

![Graph showing measurement points](Image)
• Too complicated for me to figure out
 – So, what to do?
Delegate!
Polarization

• **Status**
 – Things look good
 – Instrumental polarization appears low, about 0.02%

• **To do**
 – Better estimate and correct for instrumental polarization
 – Decide on exact settings and order
 • Min crosstalk
 • Min wear
 – Zero point for temperature dependence
More LED Ratio
Framelist Choices Polarization Scheme

- **Options 1 and 2 – Cameras not combined**
 - Same polarimetric noise per unit time
 - Option A (LCP/RCP on one, Mod A on other) is relatively fast (vector@90s)
 - Some Stokes parameters are made from differences over long time intervals (40-50s)
 - Significant acceleration effects
 - Option C (LCP/RCP on one, Mod C on other) is slower (vector@135s)
 - But all differences are close in time (4s)
 - Almost no acceleration effects

- **Options 3 and 4 – Cameras combined**
 - Depends on ability to combine the cameras
 - Option L (LCP/RCP on one, linear on other) only vector combined (vector@90s)
 - Better polarimetry than 1 and 2
 - Calibrations on vector camera does not impact Doppler continuity
 - Option X (Mod A divided on cameras) combines to make both (vector@45s)
 - Even better polarimetry
 - Also better Doppler
 - But calibrations interrupt Doppler

- **Time averaging helps**
Framelist Examples – Polarization Scheme

Option 1

<table>
<thead>
<tr>
<th>Time(s)</th>
<th>0</th>
<th>...</th>
<th>32</th>
<th>40</th>
<th>...</th>
<th>72</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuning</td>
<td>I1</td>
<td>...</td>
<td>I5</td>
<td>I1</td>
<td>...</td>
<td>I5</td>
</tr>
<tr>
<td>Doppler</td>
<td>L R</td>
<td>L R</td>
<td>L R</td>
<td>L R</td>
<td>L R</td>
<td>L R</td>
</tr>
<tr>
<td>Vector</td>
<td>1 2</td>
<td>1 2</td>
<td>3 4</td>
<td>3 4</td>
<td>3 4</td>
<td>3 4</td>
</tr>
</tbody>
</table>

Option 2

<table>
<thead>
<tr>
<th>Time(s)</th>
<th>0</th>
<th>...</th>
<th>32</th>
<th>40</th>
<th>...</th>
<th>72</th>
<th>80</th>
<th>...</th>
<th>112</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuning</td>
<td>I1</td>
<td>...</td>
<td>I5</td>
<td>I1</td>
<td>...</td>
<td>I5</td>
<td>I1</td>
<td>...</td>
<td>I5</td>
</tr>
<tr>
<td>Doppler</td>
<td>L R</td>
</tr>
<tr>
<td>Vector</td>
<td>A B</td>
<td>...</td>
<td>A B</td>
<td>C D</td>
<td>...</td>
<td>C D</td>
<td>...</td>
<td>L R</td>
<td>L R</td>
</tr>
</tbody>
</table>

L=LCP, R=RCP, 1, 2, 3 and 4 combinations of I, Q, U and V, A=I-Q, B=I+Q, C=I-U, D=I+U.
Framelist Examples – Polarization Scheme

Option 3

<table>
<thead>
<tr>
<th>Time(s)</th>
<th>0</th>
<th>...</th>
<th>32</th>
<th>40</th>
<th>...</th>
<th>72</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuning</td>
<td>I1</td>
<td>...</td>
<td>I5</td>
<td>I1</td>
<td>...</td>
<td>I5</td>
</tr>
<tr>
<td>Doppler</td>
<td>L</td>
<td>R</td>
<td>L</td>
<td>L</td>
<td>R</td>
<td>L</td>
</tr>
<tr>
<td>Vector</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
</tbody>
</table>

Option 4

<table>
<thead>
<tr>
<th>Time(s)</th>
<th>0</th>
<th>...</th>
<th>32</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuning</td>
<td>I1</td>
<td>...</td>
<td>I5</td>
</tr>
<tr>
<td>Camera 1</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Camera 2</td>
<td>3</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>
Outstanding Issues

- To combine or not to combine - that is the question!
- Better polarization and potentially Doppler if combined
 - But
 - Flatfield
 - LED ratio drift
 - Detune difference
 - Roll angle variability
 - PSF/MTF/OTF difference including focus difference
 - ...
- Some other issues
 - ISS gain
 - Camera gain
 - Image center
 - Window temperature
 - Affect focus and depolarization
 - Polarization
 - Order, settings,
Plans

- No combination for Doppler
 - So no X

- Probably no combination for vector
 - So probably A or C

- May change later

- Run calibrations once in a while
 - Darks
 - Focus
 - Detunes
 - Flat fields
 - PZT
 - Offpoint
 - Roll maneuvers
 - ...
Conclusion - Continued

• Instrument works!
• Some issues to resolve
• Have lots of data:
 – Type A: 129 hours
 – Type C: 192 hours
 – Type L: 44 hours
 – Type M: 13 hours
 – Type X: 25 hours
 – Sim M: 1.4 hours
 – Fast Q: 23 hours
 – Fast V: 22 hours
 – Fast H: 20.5+ hours
 – Roll: 18 hours
 – Offpoint: 24 hours
 – Various: ?? hours
 – Total 562 hours