Observables codes: written by Richard, Jesper, and Sebastien
written in C
2 codes: line-of-sight observables, and IQUV-averaging

Lev0

- remove overscans
- apply flat-field
- run limb finder
- detect cosmic-ray hits and bad pixels

Lev1

- Apply line-of-sight observables code
- Apply IQUV-averaging observables code

Lev1.5

Data series:
 l.o.s: hmi.V_45s, hmi.M_45s, hmi.Ic_45s
 + hmi.Lw_45s, and hmi.Ld_45s (?)
 IQUV: hmi.S_720s
Line-of-sight observables code:

User provides:
- time range
- target wavelength
- camera to use
- cadence of the observables sequence

The code opens all lev1 records within the time range + extra records outside of the range.

Calculates the lev1.5 slotted time (target time) closest to the beginning of the time range requested.

Locates the lev1 filtergram with the proper wavelength and closest to the target time: used to determine which observables sequence was run (number of frames, order of the wavelengths and polarizations, need or not to combine cameras, cadence, type of observables that can be produced...).
Line-of-sight observables code:

reads 72 lev1 images: 6 wavelengths x 2 polarizations x 6 times (3 before, 3 after target time)

gap fills each image and returns an error array (Richard)

for each polarization and wavelength sends 6 images to a routine (Richard) that: removes distortion, de-rotates the images, center them to same (CRPIX1,CRPIX2) pixel and resize them to same R_SUN

NB: CRPIX1,CRPIX2,R_SUN are chosen as median values from 72 filtergrams, and vary every 45s (=> R_SUN has a 24 hour periodicity).

NB2: solar radius is different for each wavelength, but all are resized to same R_SUN

Using the same 6 images, a routine (Jesper) temporally interpolates them to produce filtergram at target time

the 12 temporally interpolated filtergrams are sent to a polarization calibration routine (Jesper) to produce true LCP and RCP (or I,Q,U, and V)

6 LCP and 6 RCP images are sent to MDI-like algorithm routine (Sebastien)

output l.o.s. observables are saved as records in different series

increases the target time by the cadence (45s) and starts all over again end of user-provided time range

Most of code is about error handling (keywords are missing, images are missing, images have too many bad pixels, some keywords seem wrong, image centers or radii vary too much...
MDI-like algorithm:

is applied separately for the 6 LCP and 6 RCP images:

computes a discrete approximation of 1st and 2nd Fourier coefficients $a_1, a_2, b_1,$ and b_2 of the Fe I line profile based on the 6 wavelengths

assumption: solar line has Gaussian profile

$$I(\lambda) = I_0 - I_d \exp\left(-\frac{(\lambda - \lambda_0)^2}{\sigma^2}\right)$$

velocity = $\frac{dv/d\lambda}{T/(2\pi)} \tan(b_1/a_1)$

$T = 338$ mA (corresponding to +/- 8.2 km/s or 3800 G)

$|B| = (v_{LCP} - v_{RCP}) \times \text{constant}$ (constant based on Lande factor 2.5)

$$\sigma = \frac{T}{\pi \sqrt{\log\left(\frac{a_1^2 + b_1^2}{a_2^2 + b_2^2}\right)/6}}$$

$$I_d = \frac{T}{2\sigma\sqrt{\pi}} (a_1^2 + b_1^2)^{1/2} \exp\left(\frac{\sigma^2\pi^2}{T^2}\right)$$

Because HMI filters are not Dirac functions, because only 6 filters are used to estimate the Fourier coefficients, and because the line is not a Gaussian, needs to correct velocities=> use of look-up tables (produced by another code; Sebastien)

look-up tables are 256x256;

issues: lookup have front-window fringe pattern; are for Calmode (phases are different in Obsmode); how to set MISSVALS?; phases are periodic (24h)
IQUV-averaging observables code:

is similar to the l.o.s. code but order of loops is different (outer loop is over wavelength, not time)

instead of doing temporal interpolation, does temporal averaging (Jesper) over 12 minutes.

Produces I,Q,U, and V polarization states at the 6 wavelengths (are used by vfisv for Stokes vector inversion).
Will be modified to also produce l.o.s. magnetogram and continuum intensity at same time.