# Analysis of NOAO AR 11093 using HMI and GONG data

Sushant C. Tripathy GONG, NSO

### Introduction

- We study the evolution of AR NOAO 11093 during its disk passage from August 6 to 14, 2010 (CR Longitude 354°)
- GONG and HMI data are processed through the GONG ring-diagram pipeline
- A quiet region is chosen on Aug 6 (CR LON 35°)
- The sunspot umbra separates into two spots on 13<sup>th</sup> but the beginning of the process is seen earlier

#### Continuum





#### Magnetogram

#### Doppler



of2010.08.13\_023:45

2/8/2011



#### Breaking of the sunspot into two separate spots on 13<sup>th</sup> August 2010.

# Motivation

- Do we see any signature of the breaking of the sunspot in the flow pattern ?
- How does the flow pattern vary between different patch sizes ?

 How does the mode and flow parameters compare between HMI and GONG observations and HMI and GONG pipelines?

# Notes on GONG R-D pipeline

 uses Symmetric Lorentzian model profile to fit the power spectrum

$$P = \frac{A\Gamma}{(\omega - \omega_0 + k_x U_x + k_y U_y)^2 + \Gamma^2} + \frac{b_0}{k^3}$$

- Normally fits up to radial order n = 6 but we have extended it up to n = 9
- Uses the new guess table from Deborah to be consistent with HMI pipeline

# The diagnostic diagram



No of modes fitted: HMI 15° (384x384 pixels): 400 (320) HMI 5° (128x128 pixels): 60 (40) GONG 15° (128x128 pixels): 320 (200)

# Variation of zonal and meridional component of velocity (HMI 5<sup>o</sup>)



# Variation of zonal and meridional component of velocity (HMI 15°)

'n

'n,

5

'n



nalysis of AR 11093 and 11092

# Variation of zonal and meridional component of velocity (GONG 15<sup>o</sup>)













/203000 4 /203100 / (Hz)

4000

5000

'n

-100

20008









3000

2000





















GONG 15 100808







# Comparison of zonal component between patches of different sizes



Zonal component of the velocity of 5° are smaller (and even of opposite sign) compared to 15° patches. However, when 9 patches of 5° are averaged, the velocities are comparable.

# Comparison of meridional component between patches of different sizes



Meridional component of the velocity of 5° are smaller (and even of opposite sign) compared to 15° patches. However, when 9 patches of 5° are averaged, the velocities are comparable.

## Zonal component of sub-surface flows



The flow pattern is similar between GONG and HMI data.

There is a daily variation and we will be analyzing these variations.

The flow pattern of 5° patches shows a variation which is different from 15° patches. The effect of magnetic field is stronger for the smaller patches.

# Meridional component of sub-surface flows



The flow pattern of 5<sup>°</sup> degree patches are different than 15<sup>°</sup> patches.

### **ANALYIS OF AR NOAA 11092**

# Variation of zonal and meridional component of velocity (AR 11092; 5<sup>o</sup>)



No systematic trend is visible

2/8/2011

10

-10

-15

-20

10

-15

-20

ď

5

-15

p

### Comparison between AR 11092 and 11093



when the sunspot starts to break

#### The meridional flows are similar

### COMPARISON BETWEEN HMI AND GONG PARAMETERS

# Comparison between HMI and GONG (AR 11092)



The flows are more consistent compared to AR 11093

# Comparison between GONG and HMI (quiet region)



What surprises is the difference in meridional component of the Velocity

# Comparison between GONG and HMI (Active Region)



What surprises is the difference in meridional component of the Velocity

### COMPARISON BETWEEN HMI AND GONG PIPELINES

# Comparison between HMI and GONG pipelines (surface flows)



The surface zonal and meridional flows are in agreement between the two pipelines

# Comparison between HMI and GONG pipelines (sub-surface flows)



The sub-surface zonal and meridional flows within error estimates are in agreement between the two pipelines

# Sound speed inversion



The regions are tracked at Carrington rate for a period of 3days (Aug 9-11).

The preliminary sound speed profile is similar to those obtained for other ARs using MDI data.

#### 2/8/2011

# What have we learned !!

- It is better to analyze sunspot regions using HMI observations and smaller tiles (5°). But effort is required to fit more modes.
- The flow velocities seen in smaller tiles are real (when we average over similar 15° tiles, we get the same answer)
- There is some evidence that the flow patterns change before the sunspot bifurcates in AR NOAA 11093 but more detailed analysis is required.

# What have we learned !!

 Frequency calculated from HMI data are higher than those obtained from GONG observations (height dependency ? Different spectral line ?)

 In general, the velocities calculated between HMI (AZ), GONG(AZ) and HMI(CA) are in agreement, but there is a small frequency dependent difference in the surface meridional component between HMI (AZ) and GONG (AZ).

# Thank You

## Ux and Uy errors for 5 degree patch





# AR 11092: FLOW (5degree)

