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 Observations are only physical after ambiguity resolution and expressed 
as heliographic B

  Heliographic B, azimuth resolved 
(note shift in neutral line)

Red/Blue: line-of-sight flux B∥ 
White: apparent polarity inversion 
line, Line-segments: B⊥ magnitude 
& direction.  Sunspot is NE at μ≃0.8.



 Zeeman effect: magnetic field induces 
both energy-level splitting and 
polarization to emergent light of 
magnetically sensitive lines.  
Splitting proportional to |B|:
Split components are polarized:

For B┴:  π components are polarized 
parallel to B┴ , σ components are 
polarized perpendicular to B┴
For B║:   π components are not 
visible, and σ components are 
circularly polarized.

Final shape of polarization spectra and 
degree of polarization due to: strength, 
direction of magnetic field, 
thermodynamics of plasma, spatial and 
spectral resolution.

Quick reference:
B║ ∝ V
B⊥  ∝  (Q2 + U2)1/2

Φ  ≈  tan-1(U/Q) →  -90° < Φ < 90°

Intro to measuring photospheric magnetic field: 
Stokes spectropolarimetry:



    Btrans direction is chosen 

↓↓↓↓↓↓↓
Bt is ambiguous; direction
choice influences B, and radial
component Bz, true magnetic 
neutral (“inversion”) line, etc.

Line of sight



Far left: B║ of “Japan sunspot” at S10 W11 ( ̣μ=0.98) from the Hinode 
SP; some false positive penumbral areas due to projection.

Right: Bz, radial field.  Even at  μ=0.98,   ∑ B║  ≠ ∑ Bz



 All methods follow same two steps:
Assume a model field
Choose azimuth which best matches the model field:  Btmodel · Btobs > 0

 Differences come in model chosen,....
Potential field, non-potential field,zebra-stripes...

There are different ways to compute a potential field....
Same at all scales? Or a different model for large- and small-scale 
structures?
Most consistent with ___ (∇∙B=0?  Jz=0? Multi-fractal?  Smoothness?)

 ... and how to implement “best match”.
Manually evaluate (“by my eye”)
Iteratively pixel-by-pixel with (or without) neighboring pixel results?
Optimize a global function
Down-hill gradient, Multi-dimensional conjugate gradient, 
Genetic, Amoeba, others....

Ambiguity resolution:



NWRA's Automated Ambiguity Resolution for HMI:
General approach

 Loosely based on the “Minimum-Energy Approach”: 

Minimize the functional 

 Jz requires derivatives in the horizontal, heliographic plane

Jz employed rather than some approximation to J, to increase speed 
and reduce need for additional derivatives.

 ∇∙B  requires derivatives in the vertical as well as horizontal direction.

The derivatives for         are computed from a potential field 
using the observed unambiguous line-of-sight field as the boundary. 
Tests showed derivatives from the potential field were adequate if 
combined with a robust optimization  

E=∑ ∣J z∣∇⋅B 

∂B z/∂ z



NWRA's Automated Ambiguity Resolution, cont'd.
 Global Optimization: Simulated Annealing is used to minimize the 

functional in strong-field areas.
Cooling schedule can be modified to best suit pipeline or targeted 
science. 

 Weak-field areas solved by acute-angle to nearest-neighbor.
Propagate “correct” solution to areas dominated by noise.

 

Why “Minimum Energy” approach?
 Best-Performing automated algorithm when tested 

against a variety of modeled observational challenges:
highly-mixed potential/non-potential,
off-disk-center constant twist
off-disk-center constant twist with added photon noise
limited spatial resolution

See Metcalf et al 2006;
Leka et al 2009 (in press)



Details: Magnetic Concentrations 
 (“the Patches”): IN PIPELINE

●Planar approximation: patch is approximated as a plane with a tangent 
point at the center.

● can use FFTs for speed.
● Quick-Look: 

● Fast annealing schedule, higher threshold for annealing
● Options are built-in for potential-field acute-angle and nearest-neighbor 

smoothing, as needed for speed.
● Science-Grade: 

● slower schedule, lower thresholds (anneal every pixel if possible)



Test data:
Synthetic: test algorithm against 
noise, spatial resolution
Hinode: high-resolution, various 
noise effects
Imaging Vector Magnetograph:
instrument design very similar to 
HMI

IVM data, 2002:

Continuum, Blos,
Btrans, Bazimuth

Hinode, and Blos vs. Btrans for plage, penumbra

Model, and Blos vs. Btrans for plage, penumbra



Model Data: bin10, or 0.3'' resolution, black=correct, white=incorrect:

Potential-Field Solution NWRA Minimum-Energy Solution

0.83 0.98 -1.11 74.0G
1.00 1.00 0.80 0.8G

Marea M Bt M Jz M delt a-B



Hinode/SP example:

AR 10953 30 April 2007
during filament formation 
(same as earlier slide) .

White/Black: where ME0, 
AZAM dis/agree.

Result: Good agreement in 
spot,  filament-formation area, 
and most of the plage regions.

Very weak-signal areas, well, 
garbage in, garbage out....

Minimum-Energy Solution vs AZAM 0.86 0.98 1.00
Marea M flux M Bt

● No time-series continuity algorithm (that is research, not pipeline code.)



Details: Full-Disk Vector Magnetograms
Status: In progress.

 Facts of Life: 
●Curvature now important:

● FFTs can no longer be used,
● Algorithms get very slow

● Lots of pixels:
● Speed is crucial, however
● any approach which employs 

tiling must not result in 
discontinuities in final product

 Approach
● The required derivatives  are 
calculated using Mollweide-
projection tiles and planar 
approximation (speed)
● Annealing occurs over full disk

● utilize strong-field masking if 
available.



Details: Full-Disk Vector Magnetograms, cont'd:  Full-Disk test data.
● Multiple pointsource collections 
on a sphere.
● Each “active region” has a 
different forcefree twist parameter 

; resulting entire configuration is α
thus not forcefree.  
● There is effectively a preferential 
polarity in the two hemispheres 
(results in a net dipole moment).  
● Magnetogram “sampled” at ≈2''.
● Stokes polarization spectra were 
calculated at each pixel based on 
MilneEddington stationary 
atmosphere
● Photonnoise added at σI/Ic≈103

● Reinverted assuming same 
restrictions.



RESULTS:

White: where correct 
for all of 10 different 
random-number 
seeds.  
Red: contour of the 
threshold used for 
smoothing: 
Btrans=100G.
Blue: smoothed 
100G contour.
Interpretation: 
correctly-resolved 
areas generally 
extend beyond 
threshold 
boundaries.  No 
tiling boundaries 
visible.



A recent attempt to apply method to SOLIS data:

Full-disk scan 2009 July 04 15:12 UT.  Fully-inverted w/ Milne-Eddington.
SOLIS ME data are inverted only above a set polarization threshold.



Problem: 

Computed derivatives 
(required for ∇∙B=0) suffer 
serious ringing due to abrupt 
transition between inverted and 
non-inverted data (“cliffs”).  
Ambiguity resolution with the 
minimum-energy method using 
these derivatives...wasn't good. 

HMI will invert every pixel and 
this should not be a problem.  



Speed:
Test different resolutions of model full-disk data using one core of a quad-
core 2.6GHz linux machine (similar to n02 here).

(This is why we (1) need more processors and (2) are working on implementing 
strong-field masking for annealing, so that we're not spending time annealing 
data which is just noise.)



Summary

 Ambiguity resolution a necessary evil for vector magnetic field data

 Method and code based on a well-tested algorithm will be in the HMI 
pipeline, with options built-in to suit both quick-look and science-grade data.

 Things to consider:

Surface potential field is being calculated during this step.  For efficiency, 
should these products be saved?

There is presently no explicit handling of time-series data.  This may be 
incorporated later after research projects are finished.

Uncertainties in magnetic-field data products may be a mix of propagation 
of errors from photometry, χ2 from fitting/inversion, and probabalistic 
uncertainties from ambiguity resolution.  How can we quote a single 
uncertainty?  Should we quote a single uncertainty?

Sponsored by NASA under LWS contract NNH05CC49C and SDO grant NAS5-02139.



Just a few different approaches:
 Potential-field acute-angle

Using FFTs (K. Leka, J. Jing) with/without flux balance, boundary padding
Based on Green's Function solution (J. Li, V. Yurchyshyn)

 Large-Scale Potential method (A. Pevtsov)
assumes large-scale fields are potential, deviations increase with spatial resolution

 Linear Force-Free Acute-Angle method (H.N. Wang)
Best-fit to LFFF field consistent with coronal-loop observations

 Uniform Shear Method (Y.J. Moon)
assumes shear angle follows a normal distribution

 Magnetic Pressure Gradient (J. Li)
assumes magnetic pressure decreases with height

 Minimum Structure (M. Georgoulis)
Minimize a component of current analytically, then numerical smoothing

 NonPotential Magnetic Field Calculation (M. Georgoulis)
Finds the distribution of Bz whose potential extrapolation plus a calculated non-potential 
component best matches the observed heliographic field.

 Pseudo-Current Method (A. Gary)
Minimizes Jz2 by locating sources of non-potentiality

 U. Hawai`i Iterative Method (Metcalf, Fan & Leka)
Iterates locally to minimizes Jz and div(B), then acute-angle neighbor smooths

 Minimum-Energy solution (Metcalf)
Global optimization of J and div(B), numerous weighting options

 



 Early synoptic vector magnetic field instruments made it very clear 
very early on that automated data-reduction algorithms were 
required, including ambiguity resolution.

U.Hawai`i's Haleakala Stokes Polarimeter, 
Imaging Vector Magnetograph; 
NAOJ/Mitaka's Flare Telescope, 
MSFC's vector magnetograph, BBSO's video magnetograph.
Observer-driven instruments: less data and less automation needed. Human-based 
interactive approaches were possible.  

 With high-resolution and high-cadence data (Hinode, ATST, 
SDO/HMI, SOLIS), algorithm(s) are required with high   
performance value (courtesy C. Henney):

Accurate enough for science goals

Stable for conditions of interest (e.g. Full-disk)

Fast relative to inversion time,
(define Time= InversionTime / AmbigTime)

Is the algorithm automatic? 
If yes, (set Auto= 1, otherwise Auto= ∞)

Merit = (% accuracy * Stability + Time) / Auto 



Continuing Challenges:
● Visualization
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