Additive and Multiplicative Systematics in Ring-Diagram Analysis

Benjamin Greer, Bradley Hindman JILA, University of Colorado at Boulder

Systematic Error

• Any kind of bias that causes mean of measured values to not match the truth.

• Consider velocities measured with fitting code, compare with known metrics

• Allow dependence on mode, disk position; assume time independent

Systematic Error

 Assume linear relation between true and measured velocity

$$\tilde{u} = Au + B$$

• Ideal is a = 1, b = 0

Mapping B Coefs

- See three dominant components:
 - Center-to-limb effect (radial inflow/outflow)
 - Meridional flow (real)
 - Zonal flow (also real)

Separating Components

- Use multi-component fit to separate global flows from center-to-limb systematic
- Rely on radial symmetry

Mapping B Coefs

Determining A Coefs

- Don't know the velocity inside the sun accurately enough
- Use differences in measured velocities instead
- Introduce velocities with tracking, fit line to data

Mapping A Coefs

Mapping A Coefs

Systematic Amplification

- Inversions will amplify small discrepancies between modes, because that's the point of an inversion.
- Amplification depends on mode-set, regularization

Systematic Amplification

Center-to-limb correction only

Systematic Amplification

Center-to-limb correction only

All corrections

END

Multi-Component Fit

$$\vec{u}^{(k,n)}(\phi,\lambda) = u_r^{(k,n)}(r)\hat{\boldsymbol{r}} + u_m^{(k,n)}(\phi)\hat{\boldsymbol{\phi}} + u_z^{(k,n)}(\phi)\hat{\boldsymbol{\lambda}},$$

$$u_m^{(k,n)}(\phi) = a_0^{(k,n)} + \sum_{j=1}^4 a_j^{(k,n)} sin(j\phi),$$

$$u_z^{(k,n)}(\phi) = \sum_{j=0}^2 b_j^{(k,n)} \phi^{2j},$$

$$u_r^{(k,n)}(r) = \sum_{j=1}^4 c_j^{(k,n)} r^j.$$