The HMI Ring-Diagram Pipelines: A Status Report

R.S. Bogart ${ }^{1}$, C.S. Baldner¹, S. Basu², D.A. Haber ${ }^{3}$, R. Howe ${ }^{4}$, I. González Hernández ${ }^{5}$, F. Hill ${ }^{5}$, K. Jain ${ }^{5}$, R. Komm ${ }^{5}$, M.C. Rabello-Soares ${ }^{1}$, S. Tripathy ${ }^{5}$
${ }^{1}$ Stanford University; ${ }^{2}$ Yale University; ${ }^{3}$ University of Colorado; 4University of Birmingham; ${ }^{5}$ National Solar Observatory

Abstract
The HMI analysis pipeline for determination of sub-surface flows has been running for nearly one year, and virtually all HMI Doppler data from the beginning of the mission have been analyzed. Over 3.5 million local-area power spectra of regions of various sizes have been produced and fitted, and inversions for the detht structure of flows have been procuced for over 130,000 of the larger regions. The pipeline for determination of the sub-surface thermal structure is still under active development, with test results available for analysis for a number of strong active regions. We describe the ring-diagram pipelines, report on their performance as part of the overall HMI data analysis pipeline, describe the data products available, and discuss outstanding problems and issues for further development.

Pipeline Descriptions

 The HMI ring-diagram pipelines implement techniques of plane-wave localhelioseismic analysis to determine spatially-resolved sub-photospheric fluid flow fields and thermal structures on a synoptic scale, and in the neighborhood of
targeted regions of interest. Two pipelines have been designed, a synoptic pipeline targeted regions of interest. Two pipelines have been designed, a synoptic pipeline
for regular sampling on a global scale, and a target pipeline for measurement of for regular sampling on a global scale, and a target pipeline for measurement of
anomalies in the flows and thermal structure associated with active regions. Here we describe only the synoptic pipeline, which is fully operational; both pipelines share common elements.
The synoptic pipeline processing consists of the following steps:
Assessment of data quality and coverage: The availability of observables data to be analyzed is regularly monitored, and when all data to be expected for the
required time interval are available typically within about 3.5 days of the end of the interval), the data are checked for quality. Most data can be accepted based on their automaitcally assigned quality mask, but occasional images are marked not to be used for processing based on anomalous statistics; most of these are in postand tabulated image rejection, is lower than 0.7 of the possible data for the period to be analyzed, further analysis is not attempted.
Averaging of observables: All acceptable images are averaged over a period
equal to one-third of a Carrington rotation $(\sim \mathrm{d})$. Such averages are produced six equal to one-third of a Carrington rotation $(-9 \mathrm{ad})$. Such averages are produced six
times per rotation, at times centered on central meridian longitudes of $360^{\circ}, 300^{\circ}$, etc. The averages are used for detrending of the individual images, in order to
remove first-order spatial field effects. In the case of Doppler data, the principal emove first-order spatial field effects. In the case of Doppler data, the principal individual Dopplergrams prior to averaging. Target generation: The synoptic pipeline is run for three sets of region sizes
(diameter $5^{\circ}, 15^{\circ}$ and 30° in tiles overlapped by half their extent in latitude and (diameter $5^{\circ}, 15^{\circ}$, and 33°) in tiles overlapped by half their extent in latitude and center. Because of the annual variation of $14^{\circ} .5$ in heliographic latitude of SDO, different heliographic coordinates are accessible at different times. Three differen target sets are used for each set of tiles, one each for $B_{0}<-3^{\circ} .625,\left|B_{0}\right| \leq 3^{\circ} .625$, and $B_{0}>3^{\circ} .625$ (Fig. 1). Not all regions can be analyzed all of the time: only 650 of ones. The others are analyzed either 9 or 3 months per year.
ones. The others are analyzed eitherg or 3 month per year.
MAI calculation: It is useful to determine a Magnetic Activity Index (MAI) to characterize each of the regions analyzed. The MA1 is calculuated by applying
(nearly) the same mapping, tracking, and apodization that will be used for the (nearly) the same mapping, tracking, and apootization that will be used for the powx spectra t t the concurrent
flux exceeding a threshold of 50 G in the data cube. The MAl is set as a keyword for the corresponding tracked data cubes and derived products.
Mapping and tracking: Each region is mapped from the original images under a Postel's (azimuthal equidistant) projection centred at its target Carrington
coordinates for an interval approximately equal to the time over which it would rotate through its width; this implies tracking at the Carrington rate for periods of about $1 / 72,1 / 24$, and $1 / 12$ of a rotation for the $5^{\circ}, 15^{\circ}$, and 30° tiles respectively.
 768,234
57 nb 36 m.
spectra of the tracked mapped data cubes are calculated with a 3 -d Fourier transform, for plane-wave analysis in the mapped coordinate system. The larget diameter to 0 at the half-width of the map, along with a very slight temporal target
taper.

- Fitting
Fitting of the spectra: The power spectra are fit for the frequencies and various parameters using two independent approaches: a fast procedure (rofitit) that fits parameter model. All spectra are fit with refitit, but owing to the computational cost rafitc is run on all 5° tiles, but for the 15° and 30° tiles, only on those on the central meridian and equator.

-Flow inversions: The wave advection parameters from the rafitif fits for each 15° and 30° region are inverted against a solar model using a SOLA procedure to
obtain estimates of the mean horizontal fluid velocity vector underlying the region, relative to the Carrington coordinate system, as a function of depth. The targe
depths go from the surface to 0.94 Ro for the 30° tiles and 0.97 Ro for the 15° tiles depths go from the surface to 0.94
both in steps of $0.001 \mathrm{R}_{0}(0.7 \mathrm{Mm})$.

Data Products

The following data series produced by the synoptic pipeline are permanently
archived as they are created and "published", i.e. made available for distribution through the general JSOC export mechanisms and the Virtual Solar Observatory,
and for automatic mirroring to other NetDRMS sites as requested. With the and for automatic mirroring to other NetDRMS sitios as requested. With the
exception of the data averages and the flow inversions, individual records in the series are labeled by the Carrington rotation number, central meridian longitude at midtime of the analysis interval, Carrington longitude, and heliographic latitude of the region. (Stonyhurst longitude, thouh redundat is also used as a prime key for Data averages

Mapped and tracked data cube

Averaged power spectra

Flow inversions
 Iongtude at tiditime
hni.ravilows_fda__frame sets of 69 , sampled 12 per ${ }_{C R}^{\text {hin rdvilows_fda30_frame selts of } 69 \text {, sampled } 12 \text { per }}$
The following data series are being produced by the target pipeline. They are not
permanently archived and generally disappear atter a few months. They are available for analysis to science team members and can be provided to others by arrangement, through the same JSOC export mechanisms (JSOC2). Individual
records in the series are labeled by a string identifier constructed from the target AR number and the region offset in latitude and longitude from the target
Mapped and tracked data cubes
Power spectra

Processing Status, Plans
18 complete rotations have been processed through the synoptic pipeline (Fig. 2). We are currently reviewing the pipeline process and data products for possible
improvements. Final implementation of the target pipeline awaits further development of the inversion procedures, expected early next year. Test data have been produced for eleven active regions, including all of those that crossed central
meridian during CR 2100.

Uneionoal (shallo

$\stackrel{\text { Unona (medium) }}{\sim}$ $U_{\text {meitional (medium) }}$ Uonal (deep)

Carrington
Rotation(s)
俍 We have recently added two new data products to the synoptic pipeline, averages of the power spectra for the 15° and 30° tiles at each "disc position" (Stonyhurst
coordinates) over the 24 or 12 samples respectively of a Carrington rotation. These averaged spectra are being used to help understand systematic effects in the ring spectra themselves (and the fitting procedures) that depend on observing geometry. It is expected that they will also be used to establish a baseline of reference frequencies to be used in structure inversions, since the averages have greatly enhanced signal to noise. All 18 Carrington rotations during which HMI has observed have been analysed, and
the results for the flow parameters shown in Fig. 3 dramatically illustrate the systematic effects. The substantial east-west variation in the apparent differential rotation must certainly be an artifiact. It is interesting that the systematic asymmetries are strongly dependent on the mode set, implying different variations with depth in the inverted flows. The differences are striking for the zonal flow, for which the east-west gradient actually reversess sign, but they are also clear in the meridional flow parameter as well. (Most estimates of meridional circulation have been based on fits along the central meridian only.) The, dependence of these variations on mode set may be related to the
dependence of the systematic east-west differences in mode frequency with frequency, as illustrated in Fig. 4. It has been suggested that long-term variations in the inferred dipendence of the systematic east-west differencess in mode frequency with frequency, as illustrated in Fig . 4 . It has been suggested that long-term variations in the inferred
flows may be due to the annual variation in observer B_{0}. There is some evidence of such an annual trend in the asymmetric structures, but it clearly does not account or most of the temporal variations. Some, particularly at lower latitudes, may also be caused by the overall increase in activity as well.
\qquad

