Category Archives: Helioseismology

171. Flare-induced Sunquake Signatures in the Ultraviolet as Observed by the Atmospheric Imaging Assembly

Contributed by Sean Quinn. Posted on November 23, 2021

Sunquakes are helioseismic waves excited by solar flares, usually observed in the photosphere. However, some of these events are found to have their counterparts in the chromosphere, as observed in the SDO/AIA UV channels.

166. One-Sided Arc Averaging Geometries in Time-Distance Local Helioseismology

Contributed by David Korda. Posted on October 25, 2021

Instead of the center-annulus measurement geometry that time-distance helioseismology typically uses, a new one-sided center-arc measurement scheme is developed. This method shows advantage in measuring subsurface flows in in a close neighborhood of magnetic regions.

157. Forward Modeling Helioseismic Signatures of One- and Two-Cell Meridional Circulation

Contributed by Andrey M. Stejko. Posted on May 24, 2021

Helioseismic wavefields are simulated using different meridional-circulation models. Time-distance helioseismic measurements applied on the simulated data indicate that it may be difficult to distinguish between single- or double-cell meridional circulation profiles.

155. Hydrodynamic Properties of the Sun’s Giant Polar Vortices

Contributed by David H. Hathaway. Posted on April 6, 2021

The giant cellular flows, obtained through tracking HMI-observed Dopplergrams, are used to estimate kinetic helicity and Reynolds stress inside the Sun, as well as differential rotation and poleward drift near the bottom of the convection zone.

153. Computing Helioseismic Sensitivity Kernels for the Sun’s Large-scale Internal Flows Using Global-scale Wave-propagation Simulations

Contributed by Junwei Zhao. Posted on March 28, 2021

A new method to derive the helioseismic sensitivity kernels for the Sun’s large-scale internal flows is developed. The new method is based on the idea of placing a small-volume flow perturbation inside the Sun’s model, simulating the wavefield in the photosphere, and then measuring the phase shifts caused by this internal perturbation.

152. Probing the Solar Meridional Circulation using Fourier Legendre Decomposition

Contributed by Doug Braun. Posted on March 16, 2021

Fourier Legendre decomposition is applied on HMI’s long-term Doppler-velocity observations to derive the Sun’s internal meridional circulation. In addition to the well-known center-to-limb effect, a non-axisymmetric component in the northern- and southern-hemisphere is identified as another systematic effect that complicates the derivation of the internal meridional circulation.