Category Archives: Helioseismology

198. Spectro-Polarimetric Properties of Sunquake Sources and the Origin of Sunquakes

Contributed by A. G. Kosovichev. Posted on February 13, 2024

A spectro-polarimetric analysis of the sunquake sources observed during an X1.5 flare revealed transient emission in the FeI 6173Å line core, indicating intense, impulsive heating in the lower photosphere at the beginning of the flare impulsive phase.

196. Observations of Rossby wave parameter variations during solar cycle 24

Contributed by Mattias Waidele. Posted on September 25, 2023

Equatorial Rossby waves are detected using the HMI’s time-distance subsurface flow fields. It is also found that the power of the Rossby waves show a positive correlation with the sunspot number, while the frequency of the waves shows an anti-correlation with the sunspot number.

189. Spatial Scales and Time Variation of Solar Subsurface Convection

Contributed by Alexander Getling. Posted on October 31, 2022

Spectral analysis of the spatial structure of solar subphotospheric convection is carried out for subsurface flow maps. It is found that the horizontal flow scales increase rapidly with depth, from supergranulation to giant-cell values. The total power of the convective flows is found to be anticorrelated with the sunspot number variation over the solar activity cycle in shallow subsurface layers and positively correlated at larger depths.

188. Constraining Global Solar Models through Helioseismic Analysis

Contributed by Andrey Stejko. Posted on October 28, 2022

Forward modeling is applied to numerous global hydrodynamic solar models, and helioseismic measurements on the meridional circulation are made using the forward modeling results. Comparison against the observational measurements shows significant differences, indicating our insufficient knowledge on either the global hydrodynamic modeling or the helioseismic inversions.

186. Solar-Cycle Variation of quiet-Sun Magnetism and Surface Gravity Oscillation Mode

Contributed by Andreas Korpi-Lagg. Posted on October 17, 2022

Twelve years of HMI Dopplergram and magnetogram data have been used to uncover the solar cycle dependence of the magnetically quietest regions on the Sun and to reveal an enigmatic behavior of the surface-gravity wave energy contained in those regions.

183. Phase shifts measured in evanescent acoustic waves above the solar photosphere and their possible impacts on local helioseismology

Contributed by Junwei Zhao. Posted on July 31, 2022

Analysis on high-spectral resolution data shows that oscillations in the higher atmosphere lead those in the lower atmosphere by an order of 1 s when their frequencies are below about 3.0 mHz, and lags behind by about 1 s when their frequencies are above 3.0 mHz. These phase shifts in the evanescent waves pose great challenges to the interpretation of some local helioseismic measurements that involve data acquired at different atmospheric heights.

171. Flare-induced Sunquake Signatures in the Ultraviolet as Observed by the Atmospheric Imaging Assembly

Contributed by Sean Quinn. Posted on November 23, 2021

Sunquakes are helioseismic waves excited by solar flares, usually observed in the photosphere. However, some of these events are found to have their counterparts in the chromosphere, as observed in the SDO/AIA UV channels.

166. One-Sided Arc Averaging Geometries in Time-Distance Local Helioseismology

Contributed by David Korda. Posted on October 25, 2021

Instead of the center-annulus measurement geometry that time-distance helioseismology typically uses, a new one-sided center-arc measurement scheme is developed. This method shows advantage in measuring subsurface flows in in a close neighborhood of magnetic regions.