Tag Archives: flares

121. The Origin of Major Solar Activity: Collisional Shearing between Nonconjugated Polarities of Multiple Bipoles Emerging within Active Regions

Contributed by Georgios Chintzoglou. Posted on February 28, 2019

Magnetic flux of opposite polarities belonging to two different emerging/emerged bipoles inside multipolar magnetic regions, can experience “collisional shearing”, a process resulting in strong shearing and fast cancellation of magnetic flux near the polarity inversion line. This type of flux cancellation is found to be the cause of a succession of major flares and CMEs in complex active regions.

119. Roles of Photospheric Motions and Flux Emergence in the Major Solar Eruption on 2017 September 6

Contributed by Rui Wang. Posted on January 31, 2019

Both magnetic flux emergence and shearing flows occurred before the X9.3 flare on 2017 September 6. This analysis shows that shearing flows played a more significant role in leading to the helicity and electric currents buildup before the major eruption.

115. Investigation of White-light Emission in Circular-ribbon Flares

Contributed by Yongliang Song. Posted on November 21, 2018

A total of 90 circular-ribbon flares are identified in 8 years of SDO observations, and 33 of them are found associated with white-light enhancements, a rate higher than non-circular-ribbon flares. It is thus suggested that the fan-spine magnetic field topology and the total amount of energy release plays roles in causing white-light flares.

110. Onset of Photospheric Impacts and Helioseismic Waves in X9.3 Solar Flare of September 6, 2017

Contributed by Alexander Kosovichev. Posted on September 17, 2018

Analysis of HMI and KONUS/WIND data shows that photospheric and helioseismic flare impacts started to develop in compact regions in close vicinity of the magnetic polarity inversion line in the pre-impulsive phase before detection of hard X-ray emission.

96. Evaluation of Applicability of a Flare Trigger Model
 Based on a Comparison of Geometric Structures

Contributed by Yumi Bamba. Posted on April 23, 2018

A sample of 32 flare events are analyzed to evaluate how these events agree with a flare-triggering model, which examines shear angles of large-scale magnetic field and small-scale dipole field during the flares’ precursor brightening.

90. A Comparative Study of the Eruptive and Non-Eruptive Flares Produced by the Largest Active Region of Solar Cycle 24

Contributed by Ranadeep Sarkar. Posted on March 18, 2018

AR12192, the largest active region in Solar Cycle 24, produced 6 X-class flares, but none of them were associated with a CME. However, a much weaker flare, of M4.0-class, was associated with a CME. Magnetic field and morphological changes are analyzed during these flares to understand why this is the case.