Tag Archives: solar cycles

159. Magnetic Field Dependence of Bipolar Magnetic Region Tilts on the Sun: Indication of Tilt Quenching

Contributed by Bibhuti Kumar Jha. Posted on June 15, 2021

Magnetic-field dependence of active regions’ tilt angles are analyzed using the MDI and HMI observations for two solar cycles. The variation of the tilt angles with the maximum magnetic-field strength of the ARs indicates a nonlinear tilt quenching in the Babcock–Leighton process.

133. Hemispherical Asymmetry in the Solar Meridional Flow

Contributed by B. Lekshmi. Posted on October 28, 2019

Subsurface meridional flows from ring-diagram analysis showed a clear hemispheric asymmetry in last 18 years. Interestingly, this flow asymmetry leads the magnetic flux and sunspot number asymmetry by 3.1 – 3.6 years.

126. Solar Oblateness and Its Variations in Phase with the 22-yr Magnetic Cycle

Contributed by Abdanour Irbah. Posted on June 18, 2019

The Sun’s oblateness shows a variation with solar cycles, in phase with the solar activity level in Cycle 23 but in anti-phase with the activity level in Cycle 24. Such a trend of in-phase during odd cycles and anti-phase during even cycles is confirmed after examining past observations.

114. What We Learned from a Long-term Study of Sunspot Physical Parameters

Contributed by Jing Li. Posted on November 20, 2018

Physical parameters, including sunspots tilt angles, total magnetic flux, polarity pole separations, and magnetic areas, are measured for most sunspot groups in solar cycles 23 and 24. Differences between Hale and anti-Hale sunspots in separate hemispheres and cycles are studied statistically.

109. How Many Active Regions Are Necessary to Predict the Solar Dipole Moment?

Contributed by Tim Whitbread. Posted on September 10, 2018

To assess the impact of active regions to the axial dipole moment, the authors isolate the contribution of individual regions for Cycles 21, 22, and 23 using a surface flux transport model, and find that although the top ~10% of contributors tend to define sudden large variations in the dipole moment, the cumulative contribution of many weaker regions cannot be ignored.