Tag Archives: modelling

153. Computing Helioseismic Sensitivity Kernels for the Sun’s Large-scale Internal Flows Using Global-scale Wave-propagation Simulations

Contributed by Junwei Zhao. Posted on March 28, 2021

A new method to derive the helioseismic sensitivity kernels for the Sun’s large-scale internal flows is developed. The new method is based on the idea of placing a small-volume flow perturbation inside the Sun’s model, simulating the wavefield in the photosphere, and then measuring the phase shifts caused by this internal perturbation.

91. On The Origin of the Double-Cell Meridional Circulation in the Solar Convection Zone

Contributed by Valery Pipin. Posted on March 19, 2018

It is demonstrated that when taking into account of the radial inhomogeneity of the Coriolis number, the solar-like differential rotation and the double-cell meridional circulation can both be reproduced by the mean-field model.

27. Anomalously Weak Convection on Large Scales in the Sun

Contributed by Shravan Hanasoge. Posted on September 23, 2014

Observed seismic upper bounds on large-scale lateral (horizontal) convective-velocity amplitudes in the solar interior at the depth r/R = 0.96 do not agree with modeling results derived at a similar depth from global convection simulations. The observations of low convective-velocity amplitudes throw into question our understanding of thermal and angular momentum transport in the Sun.

15. Potential field source surface “breathes” over the course of the solar cycle

Contributed by WIlliam Arden. Posted on May 15, 2014

Our results show that raising the source surface height 15-30% during solar minimum (depending on the model used) better reproduces the observed IMF open flux from OMNI. We used two different PFSS models and the MDI/HMI magnetograms as input.