Tag Archives: magnetic field

128. Evolution of Magnetic Helicity in Solar Cycle 24

Contributed by V.V. Pipin. Posted on June 25, 2019

A novel approach is developed to reconstruct the surface magnetic helicity density for the Sun or sun-like stars. The method is applied on the SDO/HMI-observed vector field synoptic data to study the temporal evolution of the Sun’s magnetic helicity density during Solar Cycle 24.

126. Solar Oblateness and Its Variations in Phase with the 22-yr Magnetic Cycle

Contributed by Abdanour Irbah. Posted on June 18, 2019

The Sun’s oblateness shows a variation with solar cycles, in phase with the solar activity level in Cycle 23 but in anti-phase with the activity level in Cycle 24. Such a trend of in-phase during odd cycles and anti-phase during even cycles is confirmed after examining past observations.

125. Solar Farside Magnetograms from Deep Learning Analysis of STEREO/EUVI Data

Contributed by Yong-Jae Moon. Posted on April 29, 2019

A deep learning code is trained using the Sun’s front-side observations, HMI’s magnetograms and AIA’s 304Å EUV images, to establish a relation between magnetic field and EUV flux. Then the code is applied on the STEREO/EUVI 304Å data to obtain the Sun’s far-side magnetic field.

124. On Solar surface Electric field Estimation with 3 Poisson solvers (SEE3Po) for driving time-dependent MHD simulations of solar active regions

Contributed by Keiji Hayashi. Posted on April 28, 2019

An algorithm, which is to calculate the electric field in order to retrieve the time variations of solar surface magnetic field observed by HMI, was recently developed.

120. Magnetic Fields and the Supply of Low-Frequency Acoustic Waves to the Solar Chromosphere

Contributed by S. P. Rajaguru. Posted on February 27, 2019

Through analyzing simultaneous HMI’s visible-light observations and AIA’s ultraviolet observations, the authors show that a significant amount of acoustic waves with frequencies lower than the theoretical cutoff frequency can channel up along less inclined magnetic field from the photosphere to the chromosphere.

115. Investigation of White-light Emission in Circular-ribbon Flares

Contributed by Yongliang Song. Posted on November 21, 2018

A total of 90 circular-ribbon flares are identified in 8 years of SDO observations, and 33 of them are found associated with white-light enhancements, a rate higher than non-circular-ribbon flares. It is thus suggested that the fan-spine magnetic field topology and the total amount of energy release plays roles in causing white-light flares.

114. What We Learned from a Long-term Study of Sunspot Physical Parameters

Contributed by Jing Li. Posted on November 20, 2018

Physical parameters, including sunspots tilt angles, total magnetic flux, polarity pole separations, and magnetic areas, are measured for most sunspot groups in solar cycles 23 and 24. Differences between Hale and anti-Hale sunspots in separate hemispheres and cycles are studied statistically.

113. What Makes CME-producing Solar Eruptions Happen?  Insight from Coronal Jets

Contributed by Alphonse Sterling. Posted on September 28, 2018

Jets resulting from eruption of minifilaments have lots of similarities to CMEs resulting from eruptions of large-scale filaments. This study on occurrences of jets can shed light on our understanding of what causes CME eruptions.

111. Synoptic Q-Maps — Insight into the Topology of the Coronal Magnetic Field

Contributed by Todd Hoeksema. Posted on September 26, 2018

Synoptic Q-maps, which display a geometric parameter describing the squashing factor of elemental flux tubes, are computed using both HMI and MDI magnetic field observations. These maps are useful for understanding coronal configurations relevant to space weather.