Tag Archives: sunspots

97. Successive X-class Flares and Coronal Mass Ejections Driven by Shearing Motion and Sunspot Rotation in Active Region NOAA 12673

Contributed by Xiaoli Yan. Posted on April 26, 2018

Shearing motions and sunspot rotations found in NOAA AR 12673 are believed to lead the free energy buildup and flux rope formation, which are responsible for the two successive X-class flares.

93. Formation of Penumbra in A Sample of Active Regions Observed by the SDO Satellite

Contributed by Mariarita Murabito. Posted on March 29, 2018

Where does a sunspot’s penumbra start to form, on the same side or the opposite side of its opposite-polarity sunspot? When does Evershed flow start to appear, before or after the penumbral formation? These questions are answered through analyzing selected samples observed by the HMI.

90. A Comparative Study of the Eruptive and Non-Eruptive Flares Produced by the Largest Active Region of Solar Cycle 24

Contributed by Ranadeep Sarkar. Posted on March 18, 2018

AR12192, the largest active region in Solar Cycle 24, produced 6 X-class flares, but none of them were associated with a CME. However, a much weaker flare, of M4.0-class, was associated with a CME. Magnetic field and morphological changes are analyzed during these flares to understand why this is the case.

89. Information theoretic approach to discovering causalities in solar cycle

Contributed by Simon Wing. Posted on March 15, 2018

Various observable, such as polar field, meridional flow, and sunspot number, are examined to identify information flow, causality, and time delay between them during solar cycles. It is expected that this analysis can provide observational constraints on solar cycle models and theories.

84. Abrupt and Permanent Changes of the Photospheric Magnetic Field During 75 flares observed with HMI

Contributed by Sebastián Castellanos Durán. Posted on January 16, 2018

Magnetic field changes associated with solar flares, observed by the SDO/HMI, are surveyed, and permanent changes of magnetic field are found in the majority of flare events. Properties of the magnetic field changes are further investigated.