98. Solar-Cycle Variations of Meridional Flows in the Solar Convection Zone with Helioseismic Methods

Contributed by Chia-Hsien Lin. Posted on May 18, 2018

Meridional flows during the solar minimum and maximum years are derived using 14 years of SOHO/MDI data. The flows changed significantly from the minimum to the maximum, and major changes were associated with the active latitudes.

97. Successive X-class Flares and Coronal Mass Ejections Driven by Shearing Motion and Sunspot Rotation in Active Region NOAA 12673

Contributed by Xiaoli Yan. Posted on April 26, 2018

Shearing motions and sunspot rotations found in NOAA AR 12673 are believed to lead the free energy buildup and flux rope formation, which are responsible for the two successive X-class flares.

96. Evaluation of Applicability of a Flare Trigger Model
 Based on a Comparison of Geometric Structures


Contributed by Yumi Bamba. Posted on April 23, 2018

A sample of 32 flare events are analyzed to evaluate how these events agree with a flare-triggering model, which examines shear angles of large-scale magnetic field and small-scale dipole field during the flares’ precursor brightening.

93. Formation of Penumbra in A Sample of Active Regions Observed by the SDO Satellite

Contributed by Mariarita Murabito. Posted on March 29, 2018

Where does a sunspot’s penumbra start to form, on the same side or the opposite side of its opposite-polarity sunspot? When does Evershed flow start to appear, before or after the penumbral formation? These questions are answered through analyzing selected samples observed by the HMI.

92. Photospheric Magnetic Properties of Active Regions: Br or Blos?

Contributed by Jordan A. Guerra Aguilera. Posted on March 26, 2018

The majority of flare forecasting methods rely on observations of magnetic field on the Sun’s surface, but which observable, Br or Blos, is a better predictor? Through comparing a few magnetic properties derived from both observables, this nugget gives some suggestion.

91. On The Origin of the Double-Cell Meridional Circulation in the Solar Convection Zone

Contributed by Valery Pipin. Posted on March 19, 2018

It is demonstrated that when taking into account of the radial inhomogeneity of the Coriolis number, the solar-like differential rotation and the double-cell meridional circulation can both be reproduced by the mean-field model.

90. A Comparative Study of the Eruptive and Non-Eruptive Flares Produced by the Largest Active Region of Solar Cycle 24

Contributed by Ranadeep Sarkar. Posted on March 18, 2018

AR12192, the largest active region in Solar Cycle 24, produced 6 X-class flares, but none of them were associated with a CME. However, a much weaker flare, of M4.0-class, was associated with a CME. Magnetic field and morphological changes are analyzed during these flares to understand why this is the case.

89. Information theoretic approach to discovering causalities in solar cycle

Contributed by Simon Wing. Posted on March 15, 2018

Various observable, such as polar field, meridional flow, and sunspot number, are examined to identify information flow, causality, and time delay between them during solar cycles. It is expected that this analysis can provide observational constraints on solar cycle models and theories.